Mechanical Loading Synergistically Increases Trabecular Bone Volume and Improves Mechanical Properties in the Mouse when BMP Signaling Is Specifically Ablated in Osteoblasts
نویسندگان
چکیده
Bone homeostasis is affected by several factors, particularly mechanical loading and growth factor signaling pathways. There is overwhelming evidence to validate the importance of these signaling pathways, however, whether these signals work synergistically or independently to contribute to proper bone maintenance is poorly understood. Weight-bearing exercise increases mechanical load on the skeletal system and can improves bone quality. We previously reported that conditional knockout (cKO) of Bmpr1a, which encodes one of the type 1 receptors for Bone Morphogenetic Proteins (BMPs), in an osteoblast-specific manner increased trabecular bone mass by suppressing osteoclastogenesis. The cKO bones also showed increased cortical porosity, which is expected to impair bone mechanical properties. Here, we evaluated the impact of weight-bearing exercise on the cKO bone phenotype to understand interactions between mechanical loading and BMP signaling through BMPR1A. Male mice with disruption of Bmpr1a induced at 9 weeks of age, exercised 5 days per week on a motor-driven treadmill from 11 to 16 weeks of age. Trabecular bone volume in cKO tibia was further increased by exercise, whereas exercise did not affect the trabecular bone in the control genotype group. This finding was supported by decreased levels of osteoclasts in the cKO tibiae. The cortical porosity in the cKO bones showed a marginally significant decrease with exercise and approached normal levels. Exercise increased ductility and toughness in the cKO bones. Taken together, reduction in BMPR1A signaling may sensitize osteoblasts for mechanical loading to improve bone mechanical properties.
منابع مشابه
Mechanical Stress Activates Smad Pathway through PKCδ to Enhance Interleukin-11 Gene Transcription in Osteoblasts
BACKGROUND Mechanical stress rapidly induces ΔFosB expression in osteoblasts, which binds to interleukin (IL)-11 gene promoter to enhance IL-11 expression, and IL-11 enhances osteoblast differentiation. Because bone morphogenetic proteins (BMPs) also stimulate IL-11 expression in osteoblasts, there is a possibility that BMP-Smad signaling is involved in the enhancement of osteoblast differentia...
متن کاملTransgenic Overexpression of Ephrin B1 in Bone Cells Promotes Bone Formation and an Anabolic Response to Mechanical Loading in Mice
To test if ephrin B1 overexpression enhances bone mass, we generated transgenic mice overexpressing ephrin B1 under the control of a 3.6 kb rat collagen 1A1 promoter (Col3.6-Tg (efnb1) ). Col3.6-Tg (efnb1) mice express 6-, 12- and 14-fold greater levels of full-length ephrin B1 protein in bone marrow stromal cells, calvarial osteoblasts, and osteoclasts, respectively. The long bones of both gen...
متن کاملAge variations in the properties of human tibial trabecular bone and cartilage.
Initiated and motivated by clinical and scientific problems such as age-related bone fracture, prosthetic loosening, bone remodeling, and degenerative bone diseases, much significant research on the properties of trabecular bone has been carried out over the last two decades. This work has mainly focused on the central vertebral trabecular bone, while little is known about age-related changes i...
متن کاملLiver-derived IGF-I regulates cortical bone mass but is dispensable for the osteogenic response to mechanical loading in female mice.
Low circulating IGF-I is associated with increased fracture risk. Conditional depletion of IGF-I produced in osteoblasts or osteocytes inhibits the bone anabolic effect of mechanical loading. Here, we determined the role of endocrine IGF-I for the osteogenic response to mechanical loading in young adult and old female mice with adult, liver-specific IGF-I inactivation (LI-IGF-I(-/-) mice, serum...
متن کاملBiomechanics and mechanobiology of trabecular bone: a review.
Trabecular bone is a highly porous, heterogeneous, and anisotropic material which can be found at the epiphyses of long bones and in the vertebral bodies. Studying the mechanical properties of trabecular bone is important, since trabecular bone is the main load bearing bone in vertebral bodies and also transfers the load from joints to the compact bone of the cortex of long bones. This review a...
متن کامل